Proceedings of
the Thirteenth International Conference
on Information and
Management Sciences

In Celebration of the 70th Birthday of Prof. Mitsuo Gen

August 3-8, 2014
Zhangjiajie, China
HALAMAN PENGESAHAN

2. Nama Jurnal : Proceeding of the 13-th International Conference on Information and Management Sciences
3. ISSN
4. Volume/Nomor/Tahun : 539-2023
 : 2014
5. Penulis : Admi Syarif, Kurnia Muludi, Mitsuo Gen

Bandar Lampung, 1 Oktober 2015

Ketua Jurusan,

Dr. Ir. Machudor Yusman, M.Kom.
19570330 1986031003

Penulis,

Dr. Ir. Kurnia Muludi, M.S.Sc.
NIP 19640616 1989021001

Dekan Fakultas MIPA,

Prof. Suharto, Ph.D.
NIP 196905301995121001

Mengetahui

Dekan LPPM,

Dr. Eng. Admi Syarif, M.S.
NIP 196701031992031001

DOKUMENTASI LEMBARA PERELUHAN DAN PENGARCAN KEPADA MASYARAKAT
UNIVERSITAS LAMPU

TGL 06-11-2015
NO. INVEN 35/LIN/26/8/LPPM/2015
JENIS Prosiding Internasional
Contents

Making Purchasing Decisions with Fuzzy Demand Information: The Use of Computer Learning..1
Jerry C. Wei

Implementation of Hybridized Genetic Algorithm for Fuzzy Traveling Salesman Problem..6
Admi Syarif, Kurnia Muludi, Mitsuo Gen

The Moderating Effects of Economic Development and National Culture on International Operations Management – A Literature Review...10
Chenlung Yang, Litzang Jane Hsu, Kuan-Yu Chen, Chwen Sheu

Optimal Layout Design for Automated Guided Vehicle Systems...16
Hsiao-Fan Wang, Ching-Min Chang

A Novel Decision Method for Moderator Variable Identification under Small Sample Size...21
Shu-Ping Lin, Chen-Lung Yang

Managing the Price and Risks of Supply Chain Financing in SME Segments via E-platforms...25
Xiande Zhao, Qiuping Huang, Thomas Kwan Ho (Yuchim) Yeung

System Design of Emergency Medical Centers with Requirement on Minimum Survival Rate..32
Young Dae Ko, Byung Duk Song, Hark Hwang

A New Model for Single Machine Scheduling with Uncertain Processing Time...42
Xingfang Zhang, Yang Liu, Mitsuo Gen, Jungbok Jo

A Components Analysis of Competitive Advantage in Brand Strategy Management
-A Case Study of Fast Retailing and Shimamura..51
Shinichiro Yamada, Ling Feng, Shota Nakatsuka

3D Rapid Prototyping and 3D Rapid Manufacturing in Science and in Economy..59
Hartmut Schwandt, Joachim Weinhold

A Multi-section EA for Integrated Production Planning and Scheduling...67
Lin Lin, Lu Sun, Yan Wang, Mitsuo Gen

Research on Yard Crane Deployment and Scheduling Coupled Model in Container Terminals..76
Chengli Liang, Songbo Zhang, Haibo She

Cost Estimation of Building Individual Cooperative Housing with Crowdfunding Model: Case of Beijing, China..................88
Jiajia Liu, Xiuting Li, Di Wu, Jichang Dong

A Novel Document Tampering Forensic Scheme Using Image Heterogeneous Channel...97
Tsung-Hung Lin, Wei-Yu Chen, Ji-Han Jiang

The Concepts of New Service Development Competence in Supply Chain Finance..101
Xiande Zhao, Thomas Kwan Ho (Yuchim) Yeung, Qiuping Huang

Some Reasoning Methods and Rules Based on Uncertain Logic...107
Yang Liu, Xingfang Zhang

Optimal Research on the Joint Construction of Reverse Logistics Network:
A Case Study of B2C Apparel E-Business Enterprise..111
Jianquan Guo, Chaoxu Weng
Development of MSI Terminal for Small Vessels...121
Geonung Kim, Gyei-Kark Park, Jungsik Jeong, Taeho Hong
Exploring between Leadership Behavior, Organizational Commitment for
Employees of College Physical Education Departments..130
Ming-Hung Chen, Guo-Ming Jung, Nan-Fu Chen, Chien-Ting Chen
A Secure Authentication Scheme Base on Chaotic Maps Using Biometric Smart Cards........133
Tsung-Hung Lin, Chia-Hao Chang
Building an Exchange System of Intentions among Navigators for Safe Navigation........136
Taeho Hong, Gyei-Kark Park, Jungsik Jeong, Geonung Kim
Jiwon Park, Jongmyeon Jeong
Apply the KANO Model at the Hospitable Quality-A Case Study of Taiwan B & Bs................144
Li-Hsin Wang, Chih-Pin Su
Robust Background Modeling Based on Statistics Theory..147
Jiyun Choi, Jongmyeon Jeong
Evaluating the Establishment Decision of Experience Stores..150
Chi Chiang, Tsui-Yi Shih
Uncertain Pricing Problem in Supply Chain with a Common Dominant Retailer................153
Hu Huang, Hua Ke
Uncapacitated p-hub Location Problem with Fixed Costs and Uncertain Flows.................159
Zhongfeng Qin, Yuan Gao
Two-Agent Scheduling Problem under Fuzzy Environment...169
Yaodong Ni, Zhaojun Zhao
Uncertain Programming Model for Uncertain Minimum Weight Vertex Covering Problem......178
Lin Chen, Jin Peng, Bo Zhang, Shengguo Li
A New Method to Monitor Internet Public Opinion Based on Uncertain Set and Uncertain Inference..185
Chuang Su, Jin Peng
Using Fuzzy Linear Regression with an Optimized h Value to Identify Functional Relationships in QFD...191
Yuanyuan Liu, Shuya Zhong
Uncertain Risk Aversion..197
Jian Zhou, Xiaoxia Zhang, Xin Gu, Di Wang
An Interactive Satisficing Approach for Multi-Objective Optimization with Uncertain Parameters..202
Shuya Zhong, Yuanyuan Liu
A New Clustering Algorithm Combining Alternating Cluster Estimation with Credibility Measure...208
Xiang Zhang, Qina Wang, Jian Zhou, Chih-Cheng Hung
Recent Advances in Stochastic Manufacturing Scheduling Problems by Evolutionary Algorithms..215
Mitsuo Gen
Big Data: A Powerful Enabler of Intelligent Manufacturing..216
Andrew Kusiak

Supply Chain and Service Innovations Based on Network Platform..217
Xiande Zhao

Recent Developments in Dynamic Pricing Research...218
Zhi-Long Chen

An Application of Neural Networks to Predict Student’s Academic Performance...................................219
Quang Hung Do, Jeng-Fung Chen

Balancing Mixed-Model Assembly Lines Using Adjacent Cross-Training in A Demand Variation Environment.................220
Caijun Yang, Jie Gao

Applying Time Buffer Concept in the Determination of the Project Task Release Schedule....................221
Sheng-Hung Chang, Lilian Sun

Dispatching Medical Supplies in Emergency Events via Uncertain Programming..................................222
Hui Li, Jin Peng, Shengguo Li

Suggestions for Shipping Company’s CO₂ Control Policy, Implementation of SEEMP.............................231
Bo-Ra Choi, Nam-kyun Im, Song-Hee Ham

Optimal Search Strategy for Uncertain Recruitment Problem...238
Chi Zhou, Wansheng Tang, Ruiqing Zhao

Uncertainty Modelling in Unmanned Aerial Vehicle ISR Mission Planning Problem.................................242
Zu-Tong Wang, Jian-Sheng Guo, Ming-Fa Zheng, Qi-Fang He, Dong-Liang Zheng

Weights Method for Solving Two-stage Programming Problem with Discrete Uncertain Variables..............248
You-She Yang, Ming-Fa Zheng, Shao-Ming Zhou, Zu-Tong Wang

Mean-Quadratic Entropy Models for Uncertainty Portfolio Selection..252
Wei Dai, Bing Cui, Ran Bi

Bang-bang Control Model with Optimistic Value Criterion for Uncertain Switched Systems......................257
Hongyan Yan, Yuanguo Zhu

Bang-Bang Property for an Uncertain Saddle Point Problem..263
Yun Sun, Yuanguo Zhu

Monitoring Mechanisms in New Product Development with Risk-Averse Project Manager.........................269
Kai Yang, Yanfei Lan, Ruiqing Zhao

Bayesian Nash Equilibrium for Uncertain Bimatrix Game with Asymmetric Information..........................274
Xiangfeng Yang, Jinwu Gao

A Fuzzy Fault Tree Analysis for High-Speed Railway Accidents..283
Pei Liu, Lixing Yang, Ziyou Gao, Shukai Li, Yuan Gao

A Multilevel Approach for Modelling Vehicle Routing Problem with Uncertain Travelling Time..................289
Yufu Ning

Object Detection via Time-Of-Flight Technology..293
Minjie Chen, Günter Bärwolff, Hartmut Schwandt
Optimal Dealer Pricing under Transaction Uncertainty
Cheng Guo, Jinwu Gao

Expected Uncertain Utility Function and Its Risk Averse Analysis
Xiaowei Chen, Gyei-Kark Park

Uncertain Pursuit Evasion Game
Lanruo Dai, Jinwu Gao

An Uncertain Goal Programming Model for Machine Scheduling Problem
Runyu Li, Gang Liu

Portfolio Selection Minimizing Soft Margin-Based Generalization Bound
Ming-Hu Ha, Yang Yang, Chao Wang

Study on the Distance Optimization between the Urban Rail Transit Station
Fang Wu, Fang Li, Mengdi Zhao, Changxi Ma

Block Replacement Policy in Uncertain Environment
Kai Yao

Evolutionary-based Automatic Clustering Method for Optimizing Multilevel Network
Feng Wen, XingQiao Wang, Mitsuo Gen

Uncertain Linear Regression Model and its Application
Haiying Guo, Xiaosheng Wang, Zhichao Gao

Toward Algorithms for Multi-Modal Shortest Path Problem and Their Extension in Urban Transit Network
Linzhong Liu, Haibo Mu, Juhua Yang

The Impact of Decision Criteria on Deadline-based Incentive Contracts in Project Management
Jiao Wang, Kai Yang, Ruiqing Zhao

Uncertain Random Hybrid Multilevel Programming
Hua Ke, Junjie Ma, Guangdong Tian

Authors Index
Foreword to the Proceedings of IMS 2014
In Honor of Professor Mitsuo Gen for His 70th Birthday

It is a great honor for me to write this preface to the Proceedings of the Thirteenth International Conference on Information and Management Sciences (IMS 2014) in celebration of the 70th birthday of Professor Mitsuo Gen. The conference IMS2014, sponsored by the International Association for Information and Management Sciences (IMS), will be held during August 3rd to 8th, 2014 at Zhangjiajie, Hunan Province, China. The conference aims to enhance the global competitiveness of the business enterprises through the application of information and management sciences. In addition the conference wishes to foster international collaborations among leading scientists, engineers and scholars from around the world. In fact, IMS conferences have quickly developed into an important forum for the exchange of new ideas among professionals in the theoretical and practical areas related to information and management sciences.

The IMS was founded on July 10, 2005. Now over ten years later, it has more than 50 board members. As the president of IMS Board (2013-2016), Professor Mitsuo Gen has made tremendous contributions to this academic organization. He has been invited to give plenary talks many times in this premier international forum for scientists and researchers presenting state-of-the-art of genetic algorithms and intelligent methods with applications in manufacturing systems design and computers, etc. In addition, he proposed an annual IMS award for best papers rewarding those who have obtained outstanding achievements in scientific research. Due to Dr. Mitsuo Gen’s efforts, the excellent papers presented at our conferences can be successfully published in the special issues of famous international journals. Taking the opportunity given by this conference, we are honored to celebrate Professor Mitsuo Gen’s 70th birthday.

Professor Mitsuo Gen has rich academic experience. He received the B.E., M.E., and Ph.D. degrees in electronic engineering from Kogakuin University, Tokyo, Japan, in the years 1969, 1971, and 1975, respectively, as well as a Ph.D. degree in informatics from Kyoto University, Kyoto, Japan, in 2006.

Dr. Mitsuo Gen is a Senior Research Scientist at Fuzzy Logic Systems Institute, Iizuka, Japan, and a Special Mission Professor at Tokyo University of Science, Tokyo, Japan. He was a Visiting Professor at the Department of Industrial Engineering and Engineering Management at National Tsing Hua University, Hsinchu, Taiwan. He is also Professor Emeritus at the Ashikaga Institute of Technology, Ashikaga, Japan. He was a faculty member at the Ashikaga Institute of Technology, and a professor at the Graduate School of Information, Production and Systems at Waseda University, Kitakyushu, Japan. From 1999 to 2000 he was a visiting professor at the Department of Industrial Engineering and Operations Research at University of California, Berkeley, CA, USA. Likewise at the Department of Industrial Engineering, Texas A & M University, College Station, TX, USA, in 2000, as well as a Hanyang Chair Professor at Hanyang University, Korea, from 2011 to 2012.

is currently serving as Editor-in-Chief of *Industrial Engineering & Management Systems*, the area editor of *Computers & Industrial Engineering* and the associate editor of *OR Spectrum*. Furthermore he also acts as editorial board member of various international journals including *Fuzzy Optimization and Decision Making, International J. of Manufacturing Technology and Management*, and *Journal of Uncertain Systems*.

As a worldwide acknowledged expert, Professor Mitsuo Gen has contributed greatly to the theoretical and experimental genetic algorithms (GA). He has published many books, including *Genetic Algorithms and Engineering Design* by Wiley in 1997, and *Genetic Algorithms and Engineering Optimization* by Wiley in 2000. These two books have been translated into Chinese. He is also a coauthor of other books such as *Introduction to Evolutionary Algorithms* in 2010, *Intelligent and Evolutionary Systems* in 2009, and *Network Models and Optimization: Multiobjective Genetic Algorithm Approach* in 2008 from Springer and others. He is widely regarded as one of the most influential scientists of our time. He is most famous for his GA research, but he also contributed to other areas of intelligent systems such as semiconductor manufacturing systems.

Each birthday is a milestone we reach on the road of life. It represents a new beginning and a new chance to get a foothold on the future. Today we take special pride in all the achievements a wonderful person has made. We look forward to greeting Professor Mistuo Gen and honoring his great work.

This preface is dedicated to Professor Mistuo Gen on the occasion of his 70th birthday. We wish Dr. Mitsuo Gen joyful days filled with friendliness, bright days filled with color, and warm days filled with happiness to last throughout all his life! Have a wonderful birthday!

Prof. Jin Peng
Huanggang Normal University
Welcome Message from the General Chair

With great pleasure and excitement, I welcome you to this Thirteenth International Conference on Information and Management (IMS2014) in Zhangjiagie, Hunan, China. Since its first meeting in 2002 in Xi’an, IMS has continued to hold annual conference in interesting cities all over China. I am delighted to report that 66 papers are accepted, and over 120 attendees are participating. Whether you are a newcomer or a frequent participant, I trust that you will soon experience the unique value and tradition that the IMS conference offers: (1) ample opportunities to share research findings, exchange ideas, and learn from fellow scholars, (2) well-designed tours that give you easy access to the local scenery and attractions, (3) carefully selected venues that offer favorite local foods and cultural displays, and most importantly, (4) a small community atmosphere to meet interesting people and make friends.

This year, we would also like to celebrate the 70th birthday of Professor Mitsuo Gen and to honor the contributions that he has made to IMS and to his field. Dr. Gen is a world-renown scholar in Industrial Engineering and Fuzzy Logic Systems. He has published more than a hundred papers in various research outlets and has directed numerous Ph.D. dissertations. He has been a frequent contributor and participant in past IMS conferences and has been the President of IMS for the past few years. He is like a magnet that attracts other top scholars to IMS. This year, he has made a tremendous effort to organize a Special Issue in The Journal of Intelligent Manufacturing so that good papers in this Conference will be considered for its publication.

This proceedings contains contributions from a number of leading researchers. They address topics of both current theoretical and applied interest to the scientific community. The plenary talks will be addressed by Mitsuo Gen from Tokyo University of Science and Fuzzy Logic Systems Institute, Andrew Kusiak from the University of Iowa, Xiande Zhao from China-Europe International Business School, Hark Hwang from Korea Advanced Institute of Science and Technology, Dan A. Ralescu from University of Cincinnati, Zihong Chen from University of Maryland, Hartmut Schwandt from Technische Universität Berlin, Jin Peng from Huanggang Normal University, and Jinwu Gao from Renmin University of China.

This conference is organized by the International Association for Information and Management Science, Tokyo University of Science & Fuzzy Logic Systems Institute, Japan, The Chinese University of Hong Kong, Tsinghua University, China and KAIST, Korea. It is no doubt that organizing and planning for IMS 2014 is a daunting task. Thus, I would like to show my appreciation to those people who have put in countless hours preparing for this gathering. First, we are grateful for the endeavors of the Program Committee (under Dr. Baoding Liu’s leadership) and Mr. Kai Yao, the IMS2014 Secretary. There are several other committees that have worked behind the scenes to support many functions of the conference, such as publishing the proceedings selecting the best papers, making local arrangements, and conducting finance and accounting. I would also like to thank all authors for submitting their original scholarly works, as well as the reviewers for their time and effort to uphold the quality of this scholarly conference. To all participants of IMS2014, I wish you and your companions a pleasant and fruitful stay at Zhangjiagie.

Sincerely Yours
Jerry C. Wei
Mendoza College of Business
University of Notre Dame, USA
General Chair, IMS2014
Thirteenth International Conference on Information and Management Sciences

Organized by
International Association for Information and Management Sciences (IMS)

Honorary General Chair
Hark Hwang, KAIST, Korea

General Chair
Jerry C. Wei, University of Notre Dame, USA

Program Committee Chairs
Gyei-Kark Park, Mokpo National Maritime University, Korea
Ming-Jong Yao, National Chiao Tung University
Yuanguo Zhu, Nanjing University of Science and Technology, China

Organizing Committee Chair
Xiaowei Chen, Nankai University, China

Best Paper Award Committee Chairs
Chwen Sheu, Kansas State University, USA
Hsiao-Fan Wang, National Tsing Hua University

Financial Chair
Baoding Liu, Tsinghua University, China

Publication Chair
Lixing Yang, Beijing Jiaotong University, China

International Program Committee
Günter Bärwolf, Technische Universität Berlin, Germany
Sheng-Hung Chang, Minghsin University of Science and Technology
Chien-Ting Chen, Chung-Yuan Christian University
Chih-Teng Chen, National Taichung University of Science and Technology
Jeng-Fung Chen, Feng Chia University
Ming-Hung Chen, National Taichung University of Science and Technology
Nan-Fu Chen, Chang Gung Institute of Technology
Rong-Chang Chen, National Taichung University of Science and Technology
Shih-Chieh Chen, Hsiu Ping Institute of Technology
Tung-Shou Chen, National Taichung University of Science and Technology
Xiaowei Chen, Nankai University
Chi Chiang, National Chiao Tung University
Jinwu Gao, Renmin University of China, China
Mitsuo Gen, Tokyo University of Science, Japan
Wien Hong, Yu Da University
Litzang Hsu, Kansas State University, USA
Chien-Che Huang, Taiwan Development Institute
Meng-Ru Huang, Hsiuping University of Sciences and Technology
Hark Hwang, KAIST, Korea
Ji-Han Jiang, National Formosa University
Jung Sik Jeong, Mokpo National Maritime University, Korea
Guo-Ming Jung, Overseas Chinese University
Voratas Kachitvichyanukul, Asian Institute of Technology, Thailand
Wen-Chung Kuo, National Yunlin University of Science & Technology
Meng-Shih Lee, Asia University
Guang-Xin Li, Xidian University, China
Chengji Liang, Shanghia Maritime University, China
Jen-Yen Lin, National Chiai University
Shuping Lin, Chung Hua University
Lin Lin, Dalian University of Technology, China
Baoding Liu, Tsinghua University, China
JiJung Lyu, National Chen Kung University
Gyei-Kark Park, Mokpo National Maritime University, Korea
Jin Peng, Huanggang Normal University, China
Zhongfeng Qin, Beihang University, China
Dan A. Ralescu, University of Cincinnati, USA
Ling Rao, Nanjing University of Science and Technology, China
Hartmut Schwandt, Technische Universitat Berlin, Germany
Chwen Sheu, Kansas State University, USA
S. Mahmoud Taheri, Isfahan University of Technology, Iran
Li-Hsin Wang, Chung Hua University
Hsiao-Fan Wang, National Tsing Hua University
Weiqun Wang, Nanjing University of Science and Technology, China
Yixiang Wang, Nanjing University of Science and Technology, China
Jerry C. Wei, University of Notre Dame, USA
Lih-Chyau Wu, National YunLin University of Science & Technology
Tao Yan, Nanjing University of Science and Technology, China
Chenlung Yang, Chung Hua University
Lixing Yang, Beijing Jiaotong University, China
Kai Yao, University of Chinese Academy of Sciences, China
Ming-Jong Yao, National Chiao Tung University
Jeff Yeung, The Chinese University of Hong Kong
Jin Hee Yoon, Yonsei University, Korea
Xingfang Zhang, Liaocheng University, China
Jianhua Zhao, Shijiazhuang University, China
Xiaode Zhao, The Chinese University of Hong Kong
Mingfa Zheng, Air Force Engineering University, China
Yuanguo Zhu, Nanjing University of Science and Technology, China
Implementation of Hybridized Genetic Algorithm for Fuzzy Traveling Salesman Problem

Admi Syarif, Kurnia Muludi, Mitsuo Gen
1. Department of Computer Sciences, Lampung University, Bandar Lampung, Indonesia, 35148
2. Fuzzy Logic System Institute, Japan
admisyarif@unila.ac.id, mitsuogen@gmail.com

Abstract: The Traveling Salesman Problem (TSP) is known as one of NP-complete optimization problems that has taken great interest of the researchers. The common objective is to determine route through some cities facilities in order to minimize travel distance. The classic TSP usually assumes that the travel costs are deterministic. In the real-world applications, due to the complexity of social and economic factors, it is often difficult to have deterministic value of travel costs (i.e. travel time). One way of handling such uncertainty in decision making is by introducing fuzzy programming approach.

Since TSP is also usually very large, huge research efforts have been devoted to heuristic algorithms for solving TSP. It has also been reported that Genetic Algorithm could give a good solution of TSP within reasonable time.

In this paper, we consider a more realistic model called fuzzy TSP. By assuming that the travel costs between cities are represented by triangular fuzzy number, we examine how the route should be designed. We develop a GA hybridized with local approach to solve the problem. Several numerical experiments are done to show the effectiveness of the proposed method.

Keywords: Fuzzy number, Logistic, Traveling Salesman Problem, Genetic Algorithm, Local Search

I. Introduction

With the development of modern society, engineering design becomes an important part human being’s life. How to solve the problems effectively and efficiently will be a great research issue in this century or even further future.

Since it was introduced by Holland (1975), Genetic Algorithm (GA) has been proven to be a valid and robust alternative in optimization fields (Goldberg, 1989; Davis, 1991). GA has been widely and successfully used in different area of applications engineering, finance, economics, agriculture, business and so on (Gen and Cheng, 2000; Michalewicz, 1994). For some specific optimization problems, however, we need more efforts to obtain an improvement of GA performance. It includes to combine some local search techniques into GA (Syarif, Yun and Gen, 2002; Syarif and Gen, 2003).

The Traveling Salesman problem refers to a special class of combinatorial optimization problems. Though it is not so clear who first introduced TSP, it has been very popular and taken a great attention of researchers since 1954 (Dantzig, Fulkerson and Johnson; 1954). It has been applied for various real world applications. The classical TSP is usually stated as a problem of finding the shortest possible tour through N "cities" so that each city is only visited at once. It seems to very easy to say, however, for large size problems, it is very difficult to solve. It belongs to the class to NP-Complete problems and cannot be solved exactly in polynomial time (Aarth and Lenstra, 1997). Thus, Solving TSP optimally would take to long and normally one would uses approximation algorithm or heuristic algorithms (Dorigo and Gambardella, 1997; Johnson and McGeoch, 2002). In our previous work, we also have implemented GA approach for solving TSP (Syarif, Wamiliana and Yasin, 2007).

In real world applications, moreover, we often have more complex of social and economic factors that need to be considered. It includes the difficulty to determine the proper value of travel cost or travel time between cities. One way of handling such uncertainty in decision making is by introducing fuzzy programming approach (Gen and Cheng, 1997).

In this paper, we consider TSP with fuzzy coefficient (TISP). We represent the travel time between the city by using triangular fuzzy number. Our major efforts in this work include the development of GA method and adopt fuzzy ranking technique for handling the objective functions and fuzziness. Numerical experiment results are presented to demonstrate the effectiveness of the proposed method.

II. Mathematical model

In this section, we shall present a comprehensive mathematical model of fuzzy TSP as follows:

Let

\[x_{i,j} = \begin{cases}
1 & \text{if the route from city } i \text{ to } j \text{ is taken} \\
0 & \text{otherwise};
\end{cases} \]
\[\min z(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} \tilde{t}_{i,j} x_{i,j}, \quad i \neq j \]
\[\text{s.t.} \quad \sum_{j=1, j \neq i}^{n} x_{i,j} = 1, \quad j = 1, 2, \ldots, n \]
\[\sum_{j=1, j \neq i}^{n} x_{i,j} = 1, \quad i = 1, 2, \ldots, n \]

where \(n \) is the number of cities. \(\tilde{t}_{i,j} \) is a triangular fuzzy number representing travel time between the city \(i \) to city \(j \).

In the above model, the objective function captures the total traveling time or total routing cost. The constraint (2) and (3) ensure that each city is only visited at once.

III. Design of the algorithm

1. Ranking Fuzzy numbers

As stated earlier, in this paper, we consider TSP in which the cost values are represented as fuzzy number (triangular fuzzy number) (Gen and Cheng, 1997). A triangular fuzzy number \(\tilde{A} \) used in this paper is denoted by \((a_1, a_2, a_3)\) where \(a_1, a_2, a_3 \) are real numbers. Its membership function \(\mu_{\tilde{A}} \) is given as follows (See also Figure 1 for the illustration of this membership function):

\[\mu_{\tilde{A}}(x) = \begin{cases}
\frac{(x-a_1)}{(a_2-a_1)}, & a_1 \leq x \leq a_2 \\
\frac{(x-a_2)}{(a_3-a_2)}, & a_2 \leq x \leq a_3 \\
0, & \text{otherwise}
\end{cases} \]

![Figure 1. The membership function](image)

When considering the optimization problem that its coefficients are represented with fuzzy numbers, the objective values of the problem will also be fuzzy numbers. One way to handling fuzziness is the ranking fuzzy numbers with integral value technique proposed by Liou and Wang (1992). The basic concept of this technique is to rank the fuzzy numbers based on its total integral value. The left and right integral values are used to reflect the pessimistic and optimistic viewpoint of decision maker respectively. The total integral value is the \(n \) computed based on this degree of optimism and each objective function values. A parameter \(\alpha \in [0,1] \) is given to adjust the degree of optimism.

Since it is clear from the above membership function that the left membership function \(\mu_{\tilde{A}}(x)^L \) is continuous and strictly increasing, its inverse function \(\mu_{\tilde{A}}(x)^S \) would exist and continuous on interval \([0,1]\). Thus it would be integrable on that interval. Similarly for the right membership function \(\mu_{\tilde{A}}(x)^R \). Both the left and right integral values can be computed as follows:

\[I^L(\tilde{A}) = \int_0^{\mu_{\tilde{A}}(x)^L} dy = \frac{1}{2}(a_1 + a_2) \]
\[I^R(\tilde{A}) = \int_0^{\mu_{\tilde{A}}(x)^R} dy = \frac{1}{2}(a_2 + a_3) \]

Thus, the total integral value for triangular fuzzy number \(\tilde{A} \) is

\[I^S(\tilde{A}) = \alpha I^L(\tilde{A}) + (1-\alpha)I^R(\tilde{A}) = \frac{1}{2}[\alpha a_3 + a_2 + (1-\alpha) a_1] \]

2. Genetic Algorithm For Fuzzy TSP

2.1. Chromosome representation

It is well known that the success of GA depends on several factors including an efficient design of the chromosome, genetic operator and so on. For TSP, one of the classical chromosome representations that can be used is permutation representation. Each chromosome represents the tour that is developed. An important issue here is how to generate chromosome that would bring us to a good solution. Instead of using random algorithm, in this research, we adopt Nearest-Neighborhood (NN) algorithm that is known to be better tour construction procedure. The NN algorithm is done by first selecting a node randomly. The next node in the tour is selected by selecting a node with nearest distance.

2.2. Genetic Operation

Crossover:

We employed PMX operation. This type of crossover is accomplished by selecting two parents of solutions and randomly taking a component from one parent to form the corresponding component of the offspring (Goldberg dan Lingle, 1985). The procedure of PMX is given as follows:
Step 1: Select substring of chromosome randomly

parent 1: 1 7 2 3 4 6 5 8
parent 2: 4 6 3 5 7 1 8 2

Step 2: Exchange the substring between two parents

parent 1: 1 7 3 5 7 0 5 8
parent 2: 4 6 2 3 1 4 8 2

Step 3: Determine the map between the substring

\[2 3 4 \rightarrow 2 \leftrightarrow 3 \leftrightarrow 5 \]
\[3 5 7 \rightarrow 4 \leftrightarrow 7 \]

Step 4: Repair the chromosome using the information given by Step 3

Mutation:
To increase the variability of the population, mutation operation is done. We used here inversion mutation that can guarantee to generate feasible chromosome when the parents are feasible (Gen and Cheng, 1997).

Evaluation and Selection:
In our GA implementation, the evaluation is done by calculating fuzzy objective for a given alpha value. We adopt the elitist selection strategy to keep the best chromosome from the current generation to the next generation.

2.3 Local Search
In order to obtain a good solution, we include local search techniques called 2-opt into our GA process. This algorithm based on the idea that a good tour must not have crossing arcs. Thus, it is designed to omit the crossing arc in tour. The tour improvement is done by checking the following situation:

\[
t(a, \text{next}(a)) + t(b, \text{next}(b)) > t(\text{next}(a), \text{next}(b)) + t(a, b).
\]

As an example, consider the tour given in Figure 2. It is clear that arc (3,9) crosses arc (4,10). And \(t(3,9) + t(4,10) > t(3,4) + t(9,10)\). Thus using 2-opt algorithm we get a better tour as given in Figure 3.

IV. Numerical Experiment

In order to show its effectiveness, the proposed GA approach has been implemented in Visual C language.

Numerical experiments are done by modifying two benchmark test problems (mod-krol50 and mod-cil76) given in the literature (Reinelt, 1991). The coefficients of the objective are represented as triangular fuzzy numbers. Those represent three different speeds (30 km/hour, 50 km/hour and 70 km/hour). We fixed the GA parameter as follows: crossover probability \(p_c = 0.4\) and mutation probability \(p_m = 0.2\), pop_size = 20 and max_gen = 1000.

![Figure 2. Tour with crossing arcs](image)

![Figure 3. Improved tour with 2-opt](image)

V. Conclusion

In this paper, we consider a TSP with fuzzy coefficient. We develop a Genetic Algorithm (GA) approach to find the best heuristic solution to the problem. The proposed method adopt the concept of the ranking fuzzy numbers with integral value for the evaluation. With this technique, the decision maker can determine his/her decision by giv-
ing flexible value for the degree of optimism. The experimental results show the effectiveness of the proposed method. Thus this technique would be suitable for decision support system.

Table 1. Computational results

<table>
<thead>
<tr>
<th>Test Problem</th>
<th>Alpha</th>
<th>0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>mod-kroa150</td>
<td>455.41</td>
<td>494.39</td>
<td>518.83</td>
<td>522.09</td>
<td>556.59</td>
<td>581.52</td>
<td>606.89</td>
<td>632.25</td>
<td>675.03</td>
<td>682.97</td>
<td>729.43</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4 The best heuristic route for mod-kroa150 and mod-cil76 ($\alpha = 0.5$).

Acknowledgement

This research was supported by Directorate of Higher Education, the Ministry of Education, and Culture of the Indonesian Government. the Grant-in-Aid for “Hibah Bersaing” Scientific Research (2014)

References

Organized by

International Association for Information and Management Sciences